

The Macroeconomics of Aging Populations

Axel Börsch-Supan

Director, Munich Research Institute for the Economics of Aging and SHARE Analyses (MEA) Managing Director and Principal Investigator, Survey of Health, Ageing and Retirement in Europe (SHARE) Director emeritus, Max Planck Institute for Social Law and Social Policy (MPISOC)

Joint Vienna Institute, 13 July 2023

- 1. The demography of aging
- 2. Some basic macroeconomics
- 3. Shrinking labor input
- 4. Shrinking capital input?
- 5. Lower productivity growth?
- 6. Will digitization help or hurt?
- 7. Deflation? Inflation?
- 8. Conclusions: Public policy in times of aging voters

1. The demography of aging

Demography is driven by three main components:

- 1. Fertility. Population increases/shrinks if fertility rate >< 2.1. Mechanical effect on aging.
- 2. Longevity. Population increases if life expectancy increases. Mechanical effect on aging.
- 3. Migration. Net immigration obviously increases population size and commonly rejuvinates a population.

The demography of aging

Crude birth rate (births po	er 1,000 people)			
Country Name	Change	2020	2035	2050
Ukraine	-0.2	7.8	7.8	7.6
Bulgaria	-0.3	8.5	8.1	8.2
Bosnia and Herzegovina	-1.1	8.6	7.7	7.6
Croatia	-1.2	8.9	7.8	7.7
Serbia	-0.8	8.9	8.0	8.1
Slovenia	-0.2	8.9	8.4	8.7
Lithuania	0.6	9.0	7.9	9.6
Latvia	-0.1	9.2	8.0	9.1
North Macedonia	-1.4	9.2	8.4	7.8
Poland	-1.2	9.4	7.9	8.2
Belarus	-0.1	9.5	8.9	9.4
Hungary	-0.8	9.6	8.8	8.8
Russian Federation	0.4	9.8	9.3	10.2
Estonia	-0.7	9.9	8.7	9.2
Albania	-3.2	10.3	8.5	7.1
Czechia	-0.2	10.3	9.5	10.1
Romania	-0.9	10.3	9.3	9.4
Slovak Republic	-1.6	10.4	8.4	8.8
Козоvо	-3.3	11.2	11.5	7.9
Montenegro	-2.1	11.4	9.8	9.3
Moldova	-0.9	12.5	10.6	11.6
Turkiye	-4.2	15.0	11.7	10.9
Average	-1.1	9.9	8.9	8.9

Life expectancy at birth				
Country Name	Change	2020	2035	2050
Moldova	5.2	70.2	73.2	75.3
Ukraine	8.4	71.2	77.2	79.6
Russian Federation	7.4	71.3	76.4	78.7
Belarus	7.4	72.5	77.3	79.9
Bulgaria	6.4	73.7	77.6	80.1
Romania	7.3	74.3	79.1	81.5
North Macedonia	7.8	74.4	79.8	82.2
Serbia	7.2	74.5	79.3	81.7
Lithuania	6.1	75.0	78.7	81.1
Latvia	4.7	75.2	77.7	79.9
Hungary	5.9	75.6	79.0	81.4
Turkiye	7.8	75.9	81.1	83.7
Montenegro	6.3	75.9	79.8	82.2
Bosnia and Herzegovina	5.9	76.2	79.8	82.1
Poland	6.4	76.5	80.6	82.9
Козоvо	7.2	76.6	81.6	83.8
Slovak Republic	5.9	76.9	80.4	82.8
Albania	7.8	77.0	82.4	84.8
Croatia	5.9	77.7	81.4	83.7
Czechia	5.4	78.2	81.6	83.6
Estonia	4.8	78.6	81.3	83.4
Slovenia	5.6	80.5	84.2	86.2
Average	6.5	75.3	79.5	81.8

THE WORLD BANK

The demography of aging

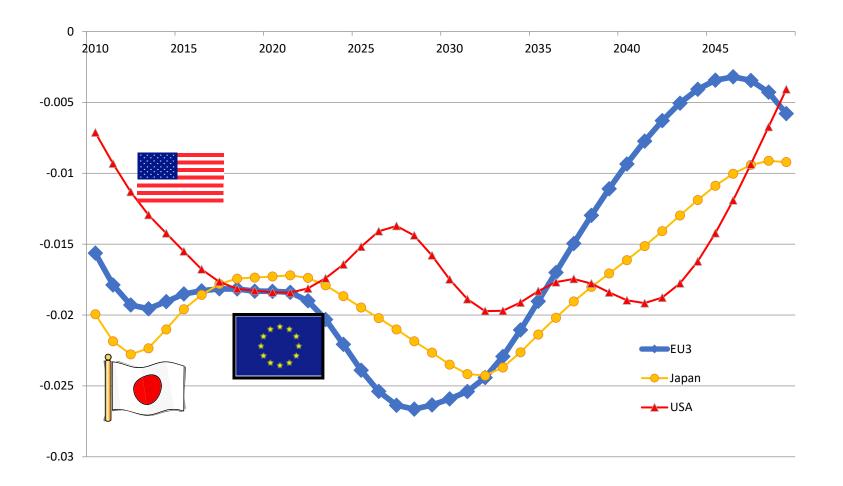
Old age dependency ratio	o (65+/15-64)			
Country	Change	2020	2035	2050
Turkiye	21.9	12.0	20.9	33.9
Козоvо	20.8	14.3	22.7	35.1
Moldova	7.3	19.9	22.9	27.2
North Macedonia	23.4	21.0	30.8	44.4
Russian Federation	17.8	22.8	30.2	40.6
Albania	22.4	23.4	38.2	45.8
Montenegro	16.8	24.3	32.1	41.1
Belarus	20.2	24.9	33.5	45.1
Slovak Republic	24.9	25.0	33.7	49.9
Ukraine	27.2	25.5	36.2	52.7
Bosnia and Herzegovina	22.4	26.4	37.7	48.7
Poland	24.6	27.7	35.7	52.3
Romania	18.9	28.6	35.2	47.5
Hungary	15.8	30.8	34.9	46.6
Slovenia	27.9	31.1	44.3	59.0
Czechia	13.1	31.6	34.9	44.7
Lithuania	19.3	31.7	44.8	51.0
Serbia	21.2	31.9	38.2	53.0
Estonia	18.9	31.9	39.3	50.7
Croatia	20.9	33.6	44.0	54.5
Latvia	16.0	34.0	42.3	50.0
Bulgaria	21.2	34.9	41.2	56.2
Average	20.1	26.7	35.2	46.8
Austria	24.5	28.8	44.7	53.3
Germany	19.5	34.2	49.7	53.6
France	16.7	34.2	44.3	50.9
European Union	22.8	32.3	44.6	55.2
•				

Population, total				
Country Name	Change	2020	2035	2050
Bulgaria	-29%	6,934,015	5,728,725	4,940,498
Latvia	-23%	1,900,449	1,657,239	1,463,839
Moldova	-23%	2,635,130	2,166,079	2,033,826
Serbia	-22%	6,899,126	6,150,261	5,380,041
Croatia	-22%	4,047,680	3,560,755	3,173,712
Poland	-19%	37,899,070	33,528,362	30,510,780
Lithuania	-19%	2,794,885	2,542,983	2,259,639
Ukraine	-19%	44,132,049	39,498,828	35,690,236
Bosnia and Herzegovina	-17%	3,318,407	3,031,666	2,739,014
Hungary	-16%	9,750,149	8,790,600	8,147,784
Albania	-16%	2,837,849	2,661,514	2,375,639
Romania	-16%	19,265,250	17,405,304	16,167,364
Slovak Republic	-14%	5,458,827	5,006,704	4,688,560
Belarus	-14%	9,379,952	8,689,560	8,108,152
Estonia	-11%	1,329,522	1,276,424	1,185,207
North Macedonia	-10%	2,072,531	2,010,722	1,871,174
Russian Federation	-9%	144,073,139	137,791,520	131,453,104
Montenegro	-8%	621,306	603,898	574,052
Slovenia	-6%	2,102,419	2,069,803	1,979,010
Czechia	-1%	10,697,858	10,494,263	10,585,315
Козоvо	-1%	1,790,133	1,812,194	1,772,812
Turkiye	14%	84,135,428	91,121,385	95,829,258
Average excl. Turkiye	-15%			
Austria	0%	8,916,864	9,139,223	8,931,299
Germany	-5%	83,160,871	82,623,472	78,831,904
France	1%	67,571,107	68,913,272	68,574,248
European Union	-7%	447,692,315	436,277,059	417,365,104

2. Some basic macroeconomics

Y = A * F(L,K) or Y/N = A * F(L/N,K/N)

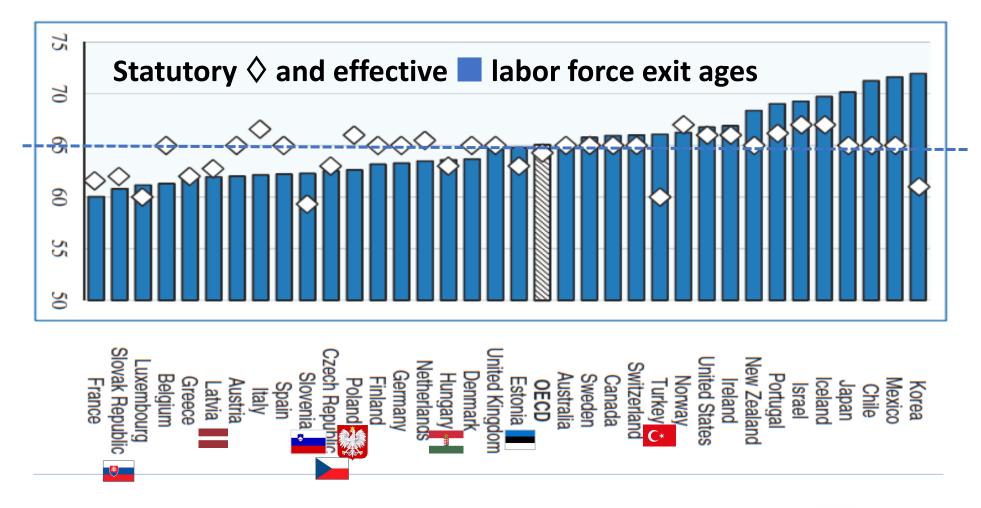
Basic macroeconomic implications:


- 1. Lower labor input per capita or even in absolute terms
- 2. Amplified by negative incentive effects due to tax and contribution increases
- 3. Lower capital input?
- 4. Lower productivity?
- => Lower GDP/cap and lower CONS/cap

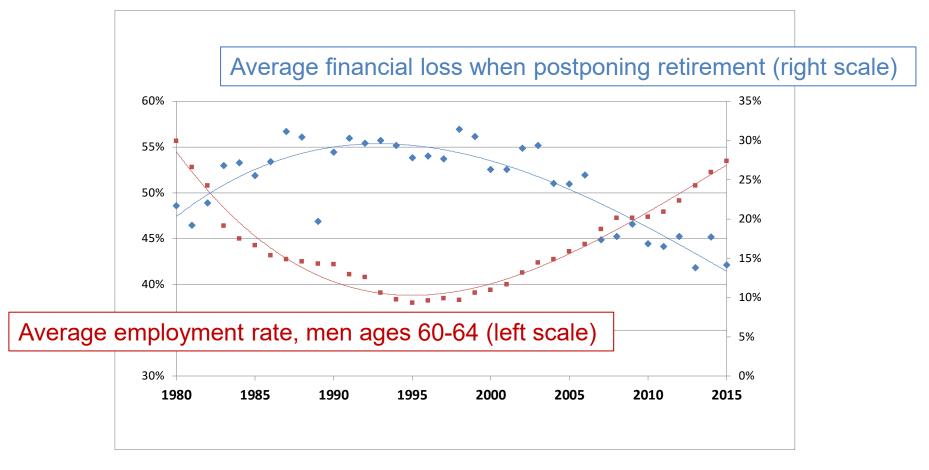
3. Lower labor input per capita Role of incentives created by pension systems

Labor force growth and pension systems

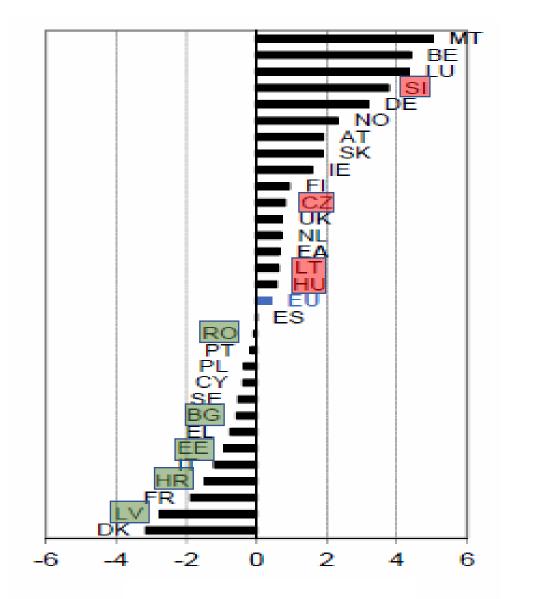
Annual percentage loss in working age individuals per population



Labour force growth: hours worked								
Country	Avg 2025-2050	2019	2025	2030	2035	2040	2045	2050
BG	-1.2	0.2	-1.2	-1.3	-1.1	-1.1	-1.2	-1.2
CZ	-0.5	0.6	-0.3	-0.3	-0.5	-0.7	-0.7	-0.6
EE	-0.4	0.3	-0.6	-0.6	-0.2	-0.3	-0.5	-0.5
HR	-0.8	0.7	-0.9	-0.7	-0.7	-0.8	-0.9	-0.9
LV	-1.4	-0.6	-1.9	-1.2	-1.2	-1.2	-1.3	-1.4
LT	-1.3	1.3	-1.2	-1.7	-1.2	-1.1	-1.1	-1.3
HU	-0.3	0.9	0.7	0.1	-0.5	-0.8	-0.7	-0.5
PL	-0.9	0.3	-0.7	-0.9	-0.7	-0.9	-1.2	-1.2
RO	-1.1	-0.4	-1.1	-0.8	-1.2	-1.1	-1.2	-1.1
SI	-0.5	0.5	0.2	-0.5	-0.4	-0.6	-0.7	-0.6
SK	-0.9	0.4	-1.0	-0.8	-0.8	-1.0	-1.0	-1.1
Average	-0.8	0.4	-0.7	-0.8	-0.8	-0.9	-1.0	-1.0
EU	-0.3	0.6	-0.1	-0.3	-0.3	-0.4	-0.4	-0.4


EU Ageing Report 2021

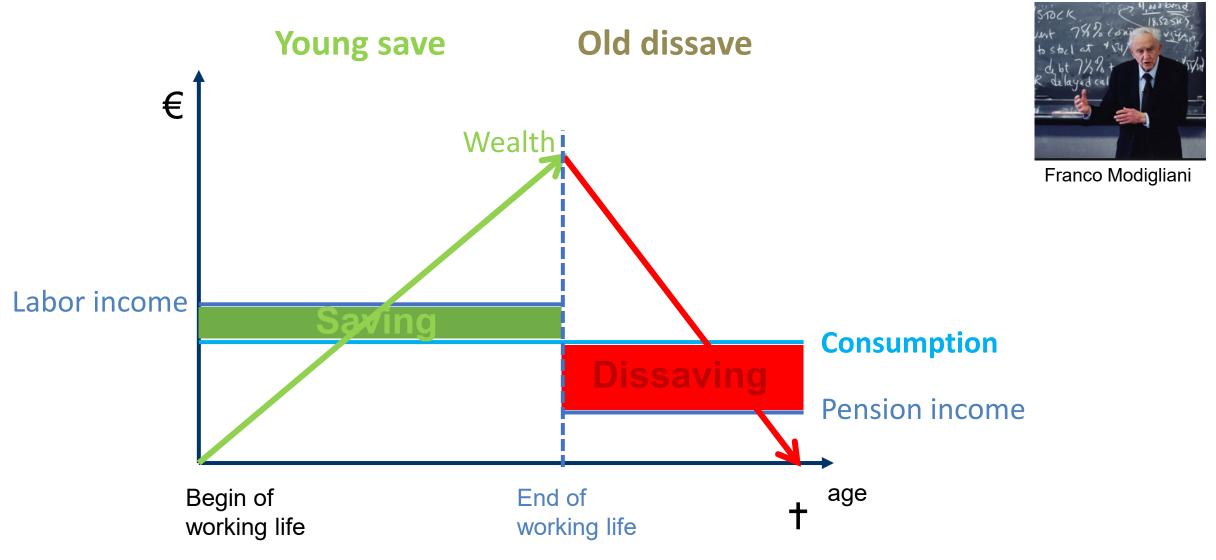
Source: NBER International Social Security Project, Börsch-Supan and Coile (2020)


Divide longevity gains between work and retirement

- Need about 2 years work to finance 1 year retirement
 since ≈ 40 years life time work and ≈ 20 years retirement
- Hence: 2 to 1 rule
 - e.g.: 3 added life years = 2 added work years + 1 added year of retirement

Labor force growth and pension systems

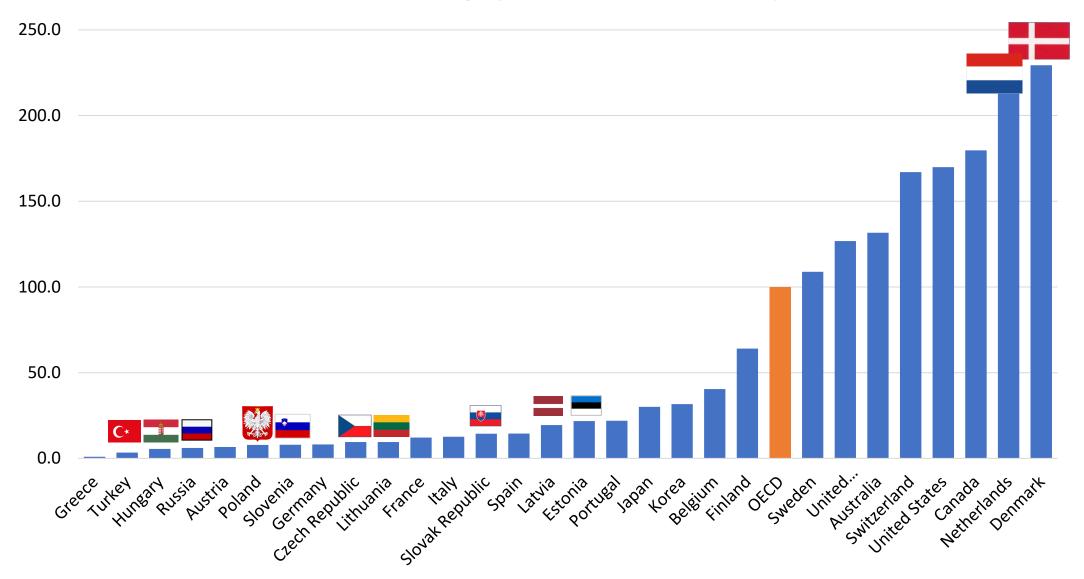
Change in gross public **pension expenditure** over the period 2013-2060 by main general schemes (in p.p. of GDP)


Disincentives to labor force participation for the younger generation

> Source: Europäische Kommission 2015 Aging Report

4. Lower capital input? *Role of retirement savings*

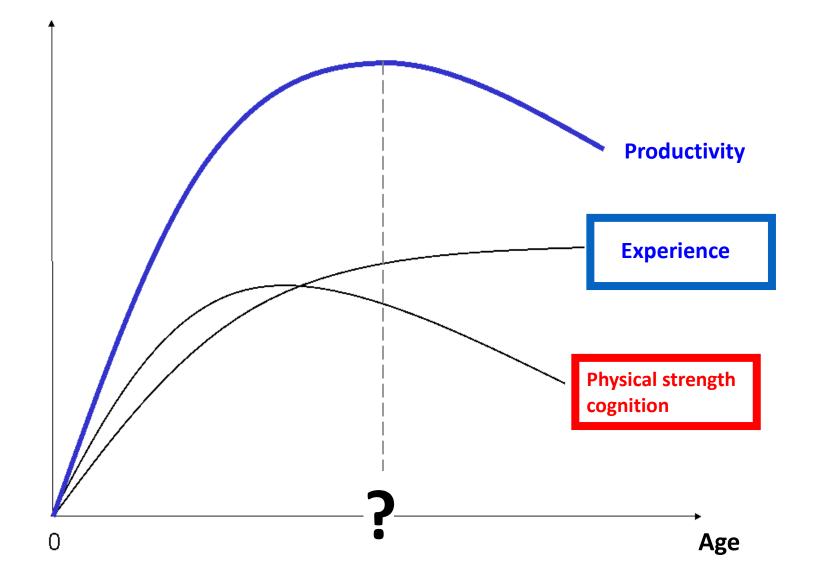
Saving and pension systems



Saving and pension systems

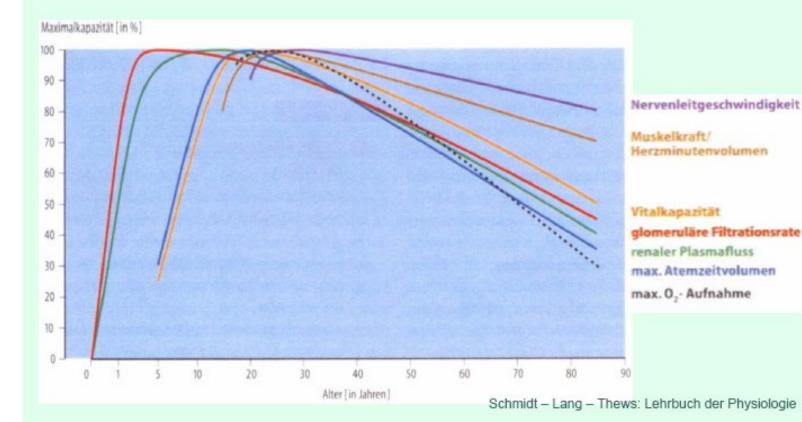
Assets in retirement savings plans (2020 or latest year available)

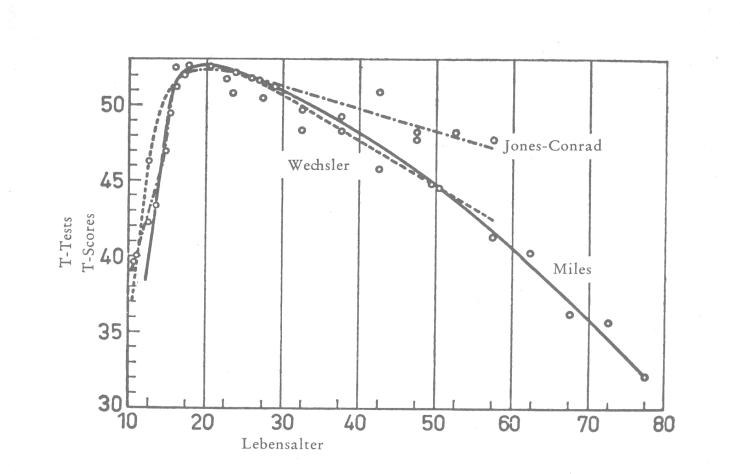
Saving and pension systems


Alterssicherungsbericht 2020: Anteil der sozialversicherungspflichtig Beschäftigten mit bAV in der Privatwirtschaft nach Betriebsgröße aba Ende 2019 (Stand: Nov. 2020) Distributional issues Betriebsgröße (Anzahl der Beschäftigten) Occupational pensions 1.000 u. mehr 88% 500 bis 999 73% 250 bis 499 58% 50 bis 249 48% 10 bis 49 40% 1 bis 9 29% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Quelle: Bundesministerium für Arbeit und Soziales (2020): Ergänzender Bericht der Bundesregierung zum Rentenversicherungs-bericht 2020 gemäß § 154 Abs. 2 SGB VI (Alterssicherungsbericht 2020), S. 144, Abb. D.1.2.

© aba Arbeitsgemeinschaft für betriebliche Altersversorgung e.V.

5. Lower productivity? *Micro vs. macro view*

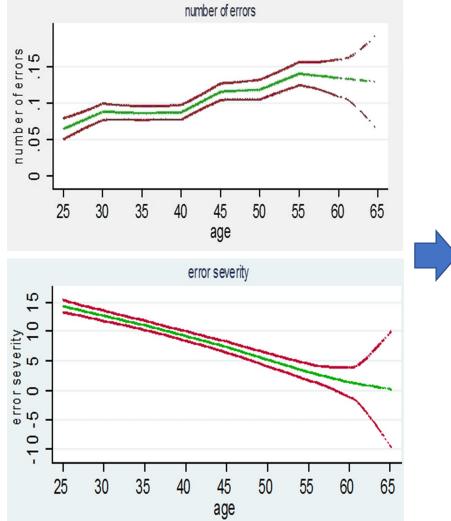

Productivity at the micro level

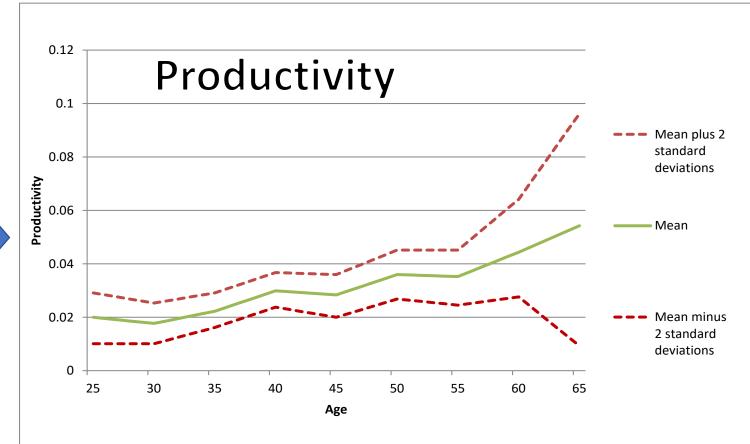


Physiological changes in various body systems

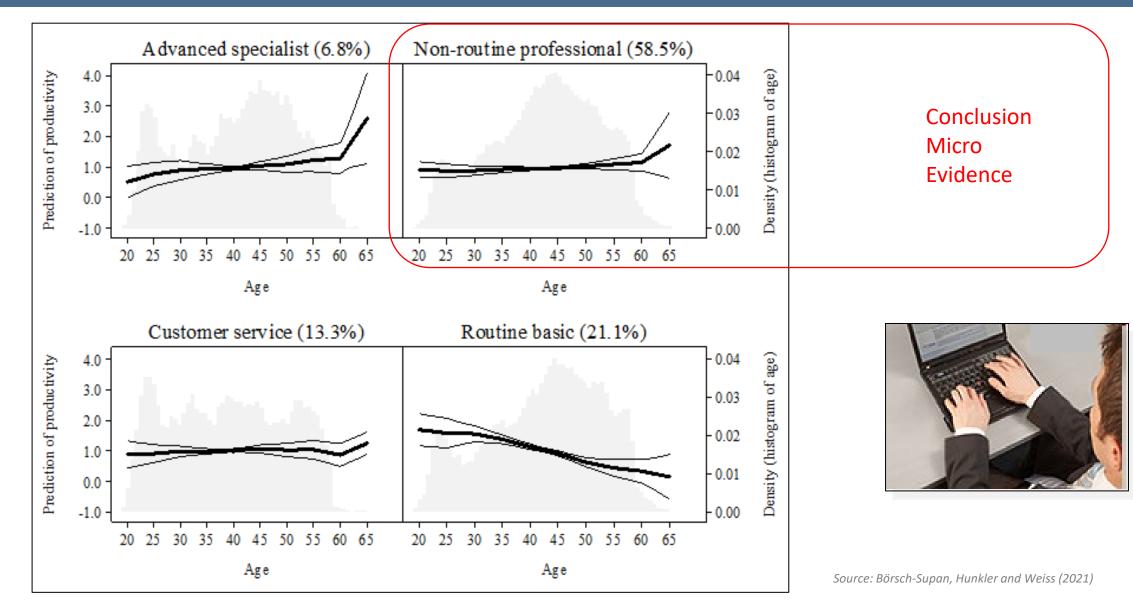
Average score of three US IQ-tests as a function of age

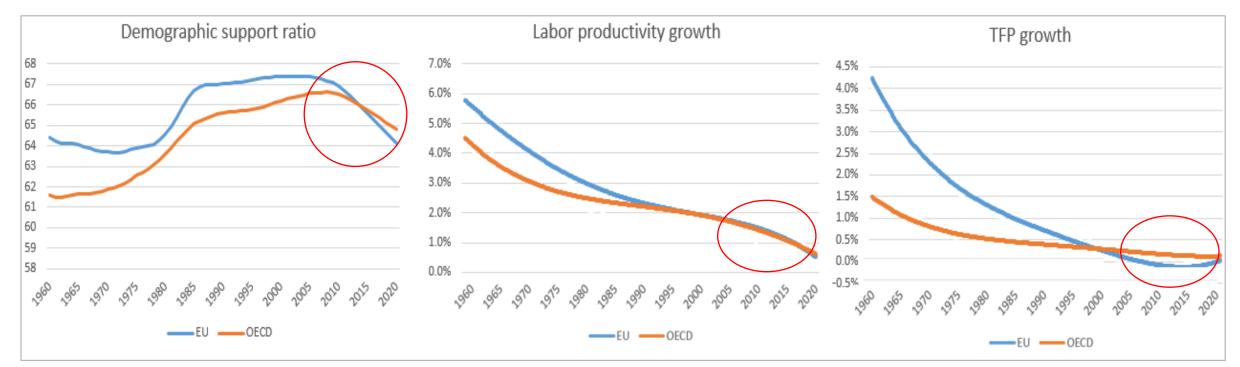
Source: Ursula Lehr, Psychology of Aging


1.2 mio error measurements



4.8 mio output measurements





Source: Börsch-Supan and Weiss (2016). Figures depict the conditional mean and the twostandard-deviation error bands

Source: Penn World Tables (Version 10, Feenstra et al. 2015), World Development Indicators (2021), last updated: 03/19/2021. Labor productivity and TFP smoothed.

Eichengreen (2015), Summers (2015), Gordon (2015, 2016): "Secular stagnation".

Innovation: Public and private research and development (R&D) spending, patents, and similar measures are shown to decline with dependency ratio.

Entrepreneurship: Number of entrepreneurs and self-employed persons in a country due less risk tolerance.

Population aging will **lower interest rates**, which reduces reduces competition in the product market in favor of established firms because low interest rates facilitate refinancing assets. Unproductive firms are thus less likely to close, and new firms with greater innovation potential than established firms do not enter markets

Government expenditures in aging populations are typically forced to spend large parts of their budgets on pensions, health care, and long-term care, thereby potentially crowding out spending on R&D that supports innovation and entrepreneurship.

Expenditures on the younger generation, including education and family support, are smaller in aging societies. Crowding-out is likely to depress future productivity.

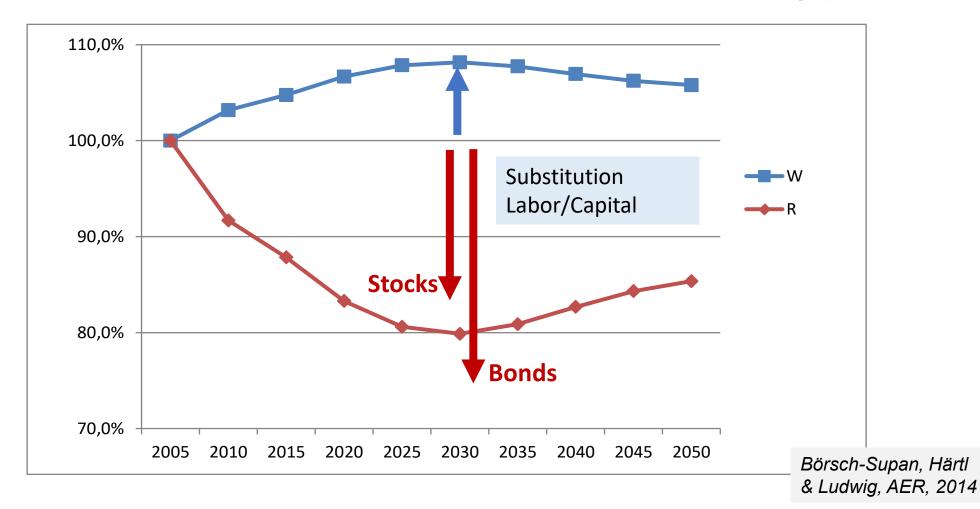
Back to the macroeconomics of aging population

Basic macroeconomic implications:

- 1. Lower labor input yes, severe
- 2. Amplified by negative incentive effects due to tax and contribution increases yes, but retirement incentives worse
- 3. Lower capital input unclear, depends on pension system
- *4. Lower productivity* micro level no, but macro level yes

=> Still: Lower GDP/cap and lower CONS/cap

Behavioral responses to aging-induced price effects

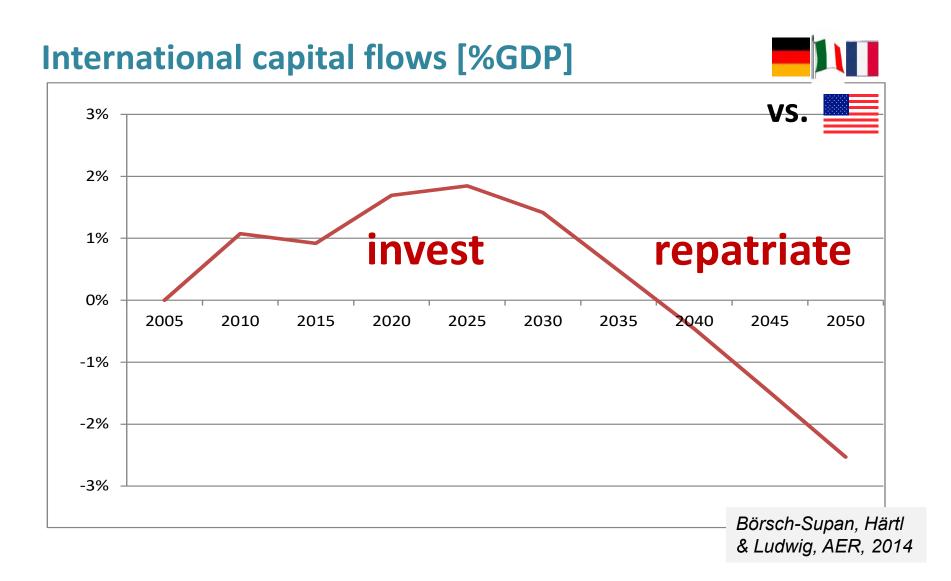

- 1. Wages up (scarcity of labor)
- 2. Returns down ("asset meltdown")
- 3. International differences
 - => production where younger workers
 - => capital flows where returns are higher

4. Time line:

first saving and foreign investment (until ~2035) then re-patriation and consumption (after ~2035)

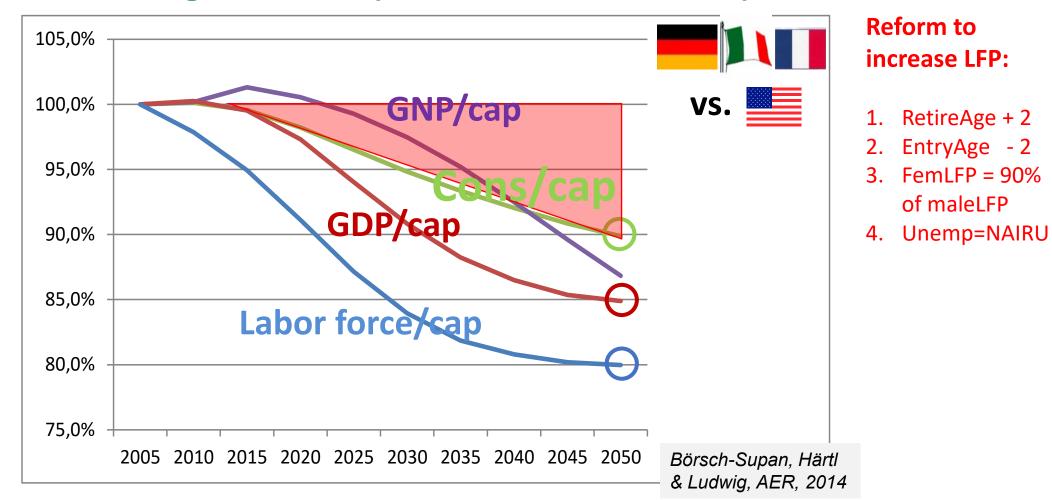
Price signals: Wages and Returns (prod.cap.)

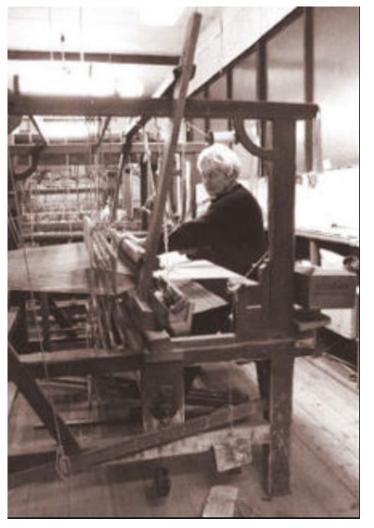
Behavioral responses to aging-induced *price* effects


- 1. Wages up (scarcity of labor)
- 2. Returns down ("asset meltdown")
- 3. International differences

=> production where younger workers
=> capital flows where returns are higher

4. Time line:

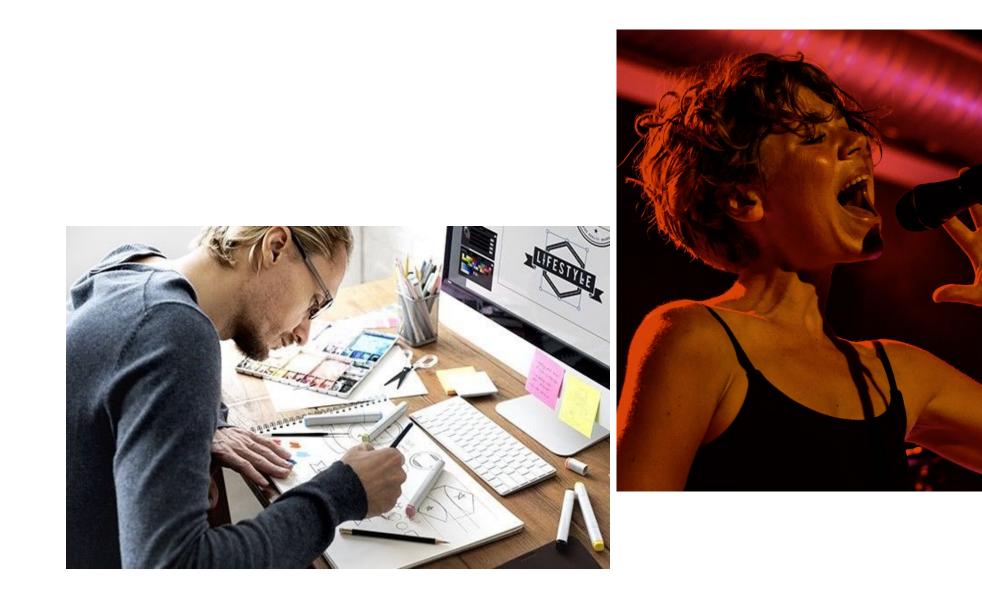

first saving and foreign investment (until ~2035) then re-patriation and consumption (after ~2035)


Material living standards (2005=100%, detrended)

6. Digitization

Digitization

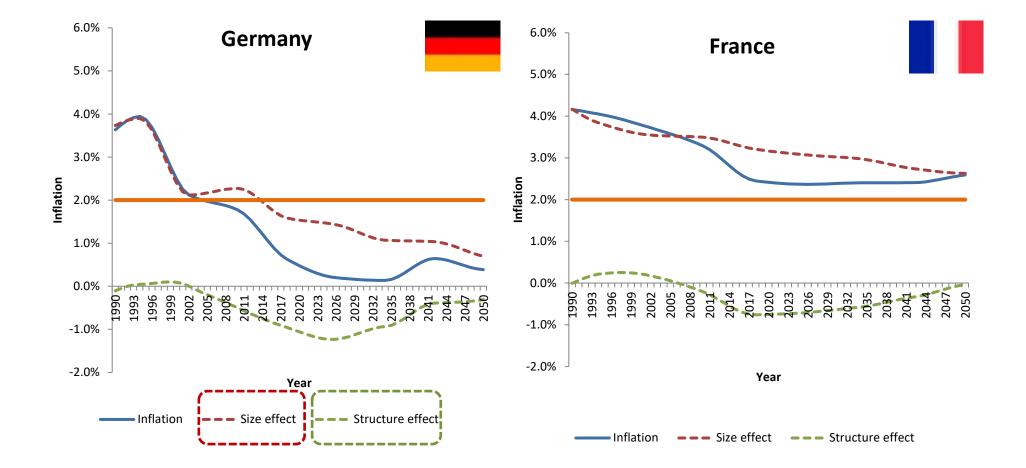
Digitization


Companies—whether they are McDonald's, introducing self-serve kiosks and firing hourly workers to ... [+] GETTY

If generative AI lives up to its hype, the workforce in the United States and Europe will be upended, Goldman Sachs reported this week in a sobering and alarming report about AI's ascendance. The investment bank estimates <u>300 million jobs</u> could be lost or diminished by this fastgrowing technology.

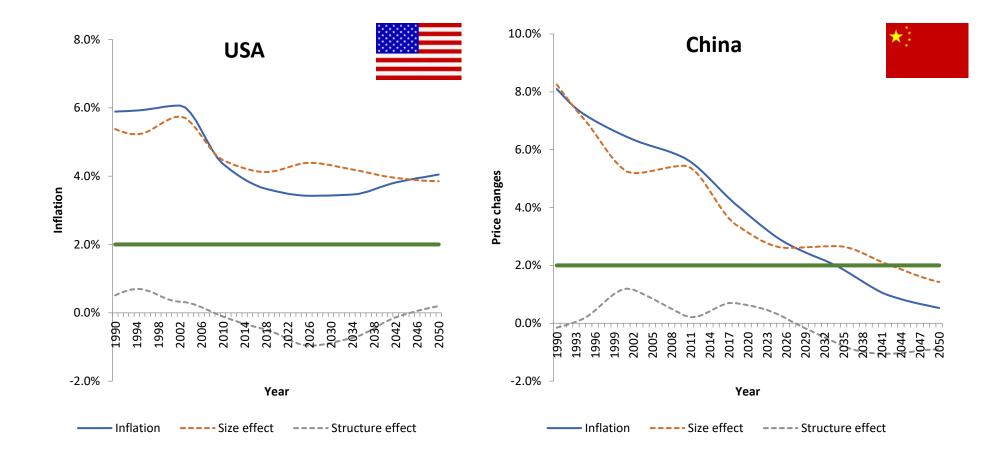
Goldman contends automation creates innovation, which leads to new types of jobs. For companies, there will be cost savings thanks to AI. They can deploy their resources toward building and growing businesses, ultimately increasing annual global GDP by 7%.

Digitization



7. Deflation? Inflation?

Deflation? Inflation?



Source: Börsch-Supan, Leite and Rausch (2019) ECB Sintra

Deflation? Inflation?

8. Conclusions

Conclusions 1: Demography and Macroeconomics

- Demography matters and is very different across countries
- Distinguish age structure from population shrinkage
- CESEE ex. Turkiye age and shrink stronger than large EU countries
- First round effects on the economy are large, but they are could be mitigated by (potential) behavioral reactions and (possible) reforms
- BUT: reforms much less popular than beggar-thy-kids policies
- International diversification important and helpful
- Digitization helps: complementary to population aging

Increase or at least stabilize labor force

Increase productivity: do not crowd out education, innovation (incl. digitization) and infrastructure

Focus the welfare state on those who need it