“New Silk Road” rail project
Construction of a broad gauge railway to Vienna
Rail transport from China to Europe entails transport times savings of almost three weeks compared to carriage by sea.
The Košice–Vienna broad gauge project will complete a connection between China and Europe and thereby increase trading opportunities.

Routes „New Silk Road“
Significant potential for an expansion of the railway freight transport share in China and the EU

Source: European Union 2016: S. 34

Transport Mix EU / China / Russia

EU: 3,259 bn t-km

China: 9,288 bn t-km

Russland: 2,577 bn t-km
Add value by the setup of the Twin-City-Region
The Twin City Region connects 3 high capacity railways (Baltic Adriatic; Orient/East; Rhine-Danube) and both silk road routes

Routing

Cargo Hub Silk Road Vienna Benefits

- No other region in Europe connects that many traffic routes
- 3 TEN-T high capacity railway corridors
- Connection to Budapest and therefore access to Belgrade and the southern Silk Road
- Connection to Adriatic ports
- Connection to Prague
- Possible connection to Russian broad gauge network
- Danube harbour with railway connection
- Vienna International Airport, M.R Štefánik Airport Bratislava
The Project - 394km broad gauge without interruption from Košice to Vienna – 2 terminals, approx. 18,500 trains p.a.

- Kosice-Wien: 394km
- Investment Total (EUR bn)
 - Infrastructure: 5.51 bn
 - Terminal: 0.95 bn
- Trains p.a. (to AT): 18,460

ÖBB-Infrastruktur AG
Currently 15 mn tons freight traffic p.a. from Ukraine and Russia, 5 mn tons continue to Austria.
Freight transport quantities on environmentally friendly railway almost 6-times as high as before the broad gauge connection
Slovakia mostly benefits during construction phase, Austria from operations and Ukraine and Russia from railway undertaking.
Freight transport hub in the heart of Europe

Single-track line, exclusively for freight services

- Connection to the 1,520 mm broad gauge network in Košice
- End in the Twin City Region Vienna–Bratislava in Austria
- 400 km line length
- 2 terminals
- In operation from 2033
- Investment costs of around EUR 6.5 billion
- 21 million tonnes of freight per year

Integration in Europe May 2018
Overview of relevant planning parameters

- **Track width**: 1,520 mm
- **Route class**: Axle load 27.0 t, 10.5 t/m
- **Structure gauge**: S and SP (according to GOST 9238-83)
- **Number of track axes**: 1
- **Max. train length (without traction unit)**: 1,000 m
- **Vmax**: 120 km/h (freight high-speed 140 km/h)
- **Min. arc radius**: 1,100 m (\(a = 0.654 \text{ m/s}^2\))
- **Max. superelevation**: 120 mm
- **Max. gradient**: 12 \(\%\) (15 \(\%\) in difficult conditions)
- **Standard gradient**: 8 \(\%\)
- **Nominal voltage, nominal frequency**: 25 kV, 50 Hz
- **Safety system**: ETCS Level 2
- **Reference vehicle**: Siemens Euro Sprinter Class 3100; container car
Operational concept and timetable

Single-track operations management with passing points, with and without operating stops

Total transport volume
Košice Terminal, Western Slovakia
18.2 million t (2030)/22.9 million t (2050)

Operating hours/day
20 on normal days
24 on peak days (38 trains for each direction of travel 2050)

Train composition parameters
Multiple-system locomotives (alternating and direct current),
2-3 locomotives, depending on the tonnage, operating period

Travel times 4 h 19 min to 5 h 45 min between Haniska and the end terminal.
Depending on the gross train weight, number of locomotives, direction of travel, operating stops, time of day
Time is on the side of the railways

Let’s set the course today!